If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+3t=7
We move all terms to the left:
t^2+3t-(7)=0
a = 1; b = 3; c = -7;
Δ = b2-4ac
Δ = 32-4·1·(-7)
Δ = 37
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{37}}{2*1}=\frac{-3-\sqrt{37}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{37}}{2*1}=\frac{-3+\sqrt{37}}{2} $
| 8x2=74 | | 16h*5=640 | | 7x2-16x=0 | | x2-21x-130=0 | | (8x-4)(7x+6)=0 | | 83×(−212)=v | | 9x2+36x+5=0 | | x/456.3=16.5 | | 20/35=x/7 | | 2y+10=3y-20 | | (3x+1)(2x+1)(x+1)=0 | | 2(1+2x)+2x=-118 | | 1000(1-0.08)*(1+x-0.011)^5=1000(1+0.05)^5 | | 1/4-2x=2 | | 9/35=3/5t | | x2-12x+28=-8 | | x^2-12x+28=-8 | | 5=v+24/8 | | 4=7x+13 | | 2u/5=50 | | 3p-6=p-8,p= | | Y=3x/7+23/7 | | (x)(2x^2)=50 | | (z)^4=1 | | 7/9x+4/9x=1/4+5/12 | | I=10.5(y/4)+14.25y | | I=10.5(y/4) | | 10x^+30x+21=0 | | 10x^+30+21=0 | | /4x2-21x+20=0 | | 1x-2x=100 | | m^2–7=0 |